A Linear Logical View of Linear Type Isomorphisms

نویسندگان

  • Vincent Balat
  • Roberto Di Cosmo
چکیده

The notion of isomorphisms of types has many theoretical as well as practical consequences, and isomorphisms of types have been investigated at length over the past years. Isomorphisms in weak system (like linear lambda calculus) have recently been investigated due to their practical interest in library search. In this paper we give a remarkably simple and elegant characterization of linear isomorphisms in the setting of Multiplicative Linear Logic (MLL), by making an essential use of the correctness criterion for Proof Nets due to Girard.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A linear logical view of linear type

The notion of isomorphisms of types has many theoretical as well as practical consequences, and isomorphisms of types have been investigated at length over the past years. Isomorphisms in weak system (like linear lambda calculus) have recently been investigated due to their practical interest in library search. In this paper we give a remarkably simple and elegant characterization of linear iso...

متن کامل

Isomorphisms in unital $C^*$-algebras

It is shown that every  almost linear bijection $h : Arightarrow B$ of a unital $C^*$-algebra $A$ onto a unital$C^*$-algebra $B$ is a $C^*$-algebra isomorphism when $h(3^n u y) = h(3^n u) h(y)$ for allunitaries  $u in A$, all $y in A$, and all $nin mathbb Z$, andthat almost linear continuous bijection $h : A rightarrow B$ of aunital $C^*$-algebra $A$ of real rank zero onto a unital$C^*$-algebra...

متن کامل

Relational Parametricity for Linear System F◦

This paper presents a novel syntactic logical relation for System F◦, a simple variant of the linear polymorphic λcalculus. We define a logical relation for open values under both open linear and unrestricted contexts, then extend it for open terms with evaluation and open relation substitutions. Relations that instantiate type quantifiers are for open terms and types. We demonstrate the applic...

متن کامل

Une étude des sommes fortes : isomorphismes et formes normales. (A study of strong sums: isomorphisms and normal forms)

A study of strong sums: isomorphisms and normal forms The goal of this thesis is to study the sum and the zero within two principal frameworks: type isomorphisms and the normalization of λ-terms. Type isomorphisms have already been studied within the framework of the simply typed λ-calculus with surjective pairing but without sums. To handle the case with sums and zero, I first restricted the s...

متن کامل

Cartesian Isomorphisms Are Symmetric Monoidal: A Justification of Linear Logic

It is proved that all the isomorphisms in the Cartesian category freely generated by a set of objects (i.e., a graph without arrows) can be written in terms of arrows from the symmetric monoidal category freely generated by the same set of objects. This proof yields an algorithm for deciding whether an arrow in this free Cartesian category is an isomorphism. Introduction. We believe that a logi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999